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1. Summaa

We have carried out a detailed analysis of three-component data frm regional seismic

events recorded by the former NRDC-Soviet Academy of Sciences regional seismic network in
Kazakhstan, USSR, with the primary goal of improving regionial seismic event location capability.
The data from these events were used in the investigation of the following problems related to
regional event location: 1) determination of wave arrival azimuth; 2) observability and value of
secondary phase arrivals; 3) evaluation and improvement of regional event location algorithms; 4)
independent determination of "master event" locations. Starting with very little prior information,
we have demonstrated the potential for a sparse seismic network of three 3-component stations,
with an aperture of about 400 km, to locate events over a wide region with reasonable accuracy and
precision, both for epicenter and depth. Our basic findings are: that arrival azimuth can be
determined with reasonable precision, but the data provide little in the way of location constraint in
most cases; secondary phase arrivals are routinely observable over a wide distance range, and they

provide important location constraints; existing location algorithms perform well and provide
appropriate estimates of location uncertainty, but must be modified for far-regional applications;
numerous "master events" have been identified and utlilized to improve our location capability.
Some keys to the success of this effort have been: (1) the initial availability of an adequate crustal
model, coupled with the inferred modest level of lateral variations in crustal structure within the
array; (2) the availability of data from known sources (the 1987 chemical explosions) to aid the

calibration of travel time models; (3) the existence of identifiable secondary P arrivals; (4) the
availability of satellite imagery to confirm the source location of some events; (5) the ability to
pursue a multifaceted approach to the investigation of the overall location problem (empirical,
theoretical, observational). We can make several specific recommendations for future efforts

related to regional event location: (1) employ array studies to help identify and characterize
secondary regional phases; (2) use short time windows at: the onset of the P arrival for precise
azimuth estimation; (3) obtain total coverage of the region in question by satellite imagery -
including multiple sources of data (e.g., SPOT, LANDSAT). Overall, we regard regional seismic

event location to be a difficult but quite tractable problem.
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2. Accon mnents

2.1. Task Objectives

We have carried out a detailed analysis of three-component data from regional seismic
events recorded by the former NRDC-Soviet Academy of Sciences regional seismic network in
Kazakhstan, USSR, with the primary goal of improving regional seismic event location capability.
One basic task was the cataloging of locations for some of the regional events detected by the
network. The data from these events were used in the investigation of the following problems
related to regional event location: 1) determination of wave arrival azimuth; 2) observability and
value of secondary phase arrivals; 3) evaluation and improvement of regional event location
algorithms; 4) independent determination of "master event" locations. An improved model for the
regional seismic velocity structure was sought in conjunction with the above tasks.

2.2. Technical Problem

Seismic event location remains a fundamental component of monitoring efforts related to
verifying nuclear test ban or test limitation treaties. Event location is importart both as a basis for
discrimination by itself and as a starting point for the analysis of wave propagation and attenuation.
The earthquake location problem is relatively well understood on a theoretical basis (Thurber,
1986). However, it can be expected that event location will be a non-trivial problem for in-country
regional networks like those considered in the recent literature (e.g., Evemden et al., 1986).

Valuable experience in the study of regional wave propagation in the U.S. has been gained
from the operation of the Regional Seismic Test Network (RSTN), but the direct applicability of

that experience to the regional monitoring of weapons testing in the U.S.S.R. is questionable, due
to significant differences in crustal structure and attenuation characteristics. However it is now
possible to obtain high-quality digital data from stations idbin the Soviet Union. An agreement
between the National Resources Defense Council, Inc., and the Academy of Sciences of the
U.S.S.R. led to the establishment of a three-station seismic network in the spring of 1987 in
eastern Kazakhstan in the Soviet Union. Each station consisted of several sets of 3-component
instruments, recorded digitally at 250 samples per second per channel using a triggered system
(Berger et al., 1988). As part of the agreement, a simlar network was set up in the western U.S.
The stations of the two networks encircled the Kazakhstan and Nevada nuclear test sites (KTS and
NTS), respectively, at distances of about 200 km. The stated purpose of these networks was to
collect data relevant to seismic monitoring of nuclear weapons tests (Berger et al., 1987). In late
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1988, the Kazakh network was dismantled, and new stations were set up (at much greater

distances from KTS) through an agreement established by with the Incorporated Research
Institutions for Seismology (IRIS) and ihe U. S. Geological Survey.

Due to the sparseness of the Kazakhstan network, most regional events (predominantly
mining blasts) did not trigger all three stations, and often triggered only one. Similar detection
difficulties can be expected for any sparse regional monitoring network. Standard earthquake
location algorithms that use P and S wave arrival times alone cannot be expected to yield

satisfactory results under such conditions, particularly for small to moderate sized events.
Alternative methods and/or additional data are needed for adequate constraint of event locations.

2.3. General Methodology

A promising approach to the problem of locating seismic events with a sparse regional
network is the use of arrival times from multiple regional phases (Pg, Lg and Rg, and possibly P*,
S* in addition to Pn, Sn) and arrival azimuths. Bratt and Bache (1988) describe an earthquake
location algorithm that uses arrival times and azimuths to estimate regional event locations.
Secondary arrivals are handled computationally exactly the same as first arrivals. Arrival azimuth
information can be incorporated by adding azimuth residuals to the residual vector and the
corresponding rows of partial derivatives to the Jacobean (Bratt and Bache, 1988). The partial
derivatives for azimuth are derived directly from the source-receiver geometry. Bratt and Bache

(1988) applied their algorithm successfully to array data from NORESS and FINESA for events at
distance ranges of 200 to 1500 km. Magotra et al. (1987) and Ruud et al. (1988) describe single-
station approaches using arrival times and azimuths (slowness vectors) that are conceptually similar
to the Bratt and Bache approach. They applied their methods to data from single-site RSTN and
NORESS three-component records, respectively.

The standard earthquake location method iteratively solves a matrix equation relating
hypocenter adjustments to arrival time residuals via the Jacobian matrix, consisting of the partial
derivatives of arrival time with respect to the event coordinates and origin time (Thurber, 1986),
with the iterations stopping when some convergence criterion is reached. Arrival azimuth

information can be incorporated as additional information for determining the location by adding

azimuth residuals to the residual vector and the corresponding rows of partial derivatives to the
Jacobian matrix (Bratt and Bache, 1988). The partial derivatives for azimuth are derived directly
from the source-receiver geometry. Both the event depth and origin time are independent of the

azimuth. In the algorithm TTAZLOC (Bratt and Bache, 1988), the final solution is obtained using
iterative damped least squares. The estimate of location uncertainty is derived using a combination
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of a priori and a posteriori data uncertainties (Jordan and Sverdrup, 1981). The a priori

uncertainty can incorporate estimated uncertainties due to measurement error and inexact

knowledge of velocity structure (Bratt and Bache, 1988; Pavlis, 1986). In this initial investigation,

we use the estimated uncertainties in arrival time reading and arrival azimuth determination for

the a priori values. The former typically are 0.25 s for P and 0.5 s for S arrivals, based on

subjective estimation of reading quality, while the latter are on the order of 50, based on the

standard deviation of the computed arival azimuth within the selected window. We also assume a

value for the Bayesian parameter K of 8 (Jordan and Sverdrup, 1981). A value for K of 8 asigns 8

degrees of freedom to the a priori uncertainty, and implies an expected standard deviation of the a

posteriori standard deviation variable (the reciprocal of the normalized a posteriori uncertainty) of

25% about a mean of 1.0 (Jordan and Sverdrup, 1981). Note that in the discussion and tables, all

error ellipses will be represented by the mainr axes of the 90% confidence ellipses.

A crustal model is required to compute travel times of the various phases. Fortunately,

Soviet Deep-Seismic-Sounding (DSS) surveys have been carried out in the region, including one

line just to the west of Karkaralinsk (Figure 1), yielding estimates of crust and upper mantle P

velocities and crustal thickness. Results from these profiles are summarized by Belyaevsky et al.

(1973), Antonenko (1984), and Leith (1987). Crustal thickness varies between about 45 and 55

kilometers in the immediate vicinity of the network (Belyaevsky et al., 1973). We have adopted a

layered approximation to the P-wave velocity model reported by Antonenko (1984), shown in

Figure 2, modified to account for thL, low-velocity granites that underly the station sites (Leith,

1987). The :inodel predicts a Pn crossover distance of about 220 km.

There is little published information on the S velocity structure in the region. Priestley et

al. (1988) carried out a preliminary teleseismic waveform inversion for records at stations BAY

and KKL using the method of Owens et al. (1984), deriving a laycrud model for the S velocity

struture beneath those stations. For comparison, taking the DSS profile results and assuming a

constant Vp/Vs ratio of 1.73 gives values for Vs that are consistent with the teleseisrric waveform

analysis of Priestley et al. (1988) for the upper crust, but somewhat lower than Priestley's for the

lower crust. This is in agreement with the finding of Alekseev e al. (1988) that Vp/Vs is higher in

the upper crust than the lower crust in the area of Kazakhstan near the Tien Shan. Given the

uncertainties, however, we have chosen to calculate the even! locations using two different S
velocity modelg (Table 1), one with constant Vp/Vs ratio (Model A), and anoihe" using the model

of Priestley et al. (1988) (Model B).

The location algorithm TIAZLOC is structured to be able to utilize arrival times of

secondary phases, assuming they can be identified and modeled correctly. Travel time calculations

4
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Figure 2. Comparison of the 1-D velocity model for the Kazakhstan area from Deep Seismic
Sounding (Antonenko, 1984), and its modifications based on empirical location work, mostly
based on the 1987 chemical explosion (Thurber et al., 1989) and synthetic modeling of regional
seismograms (this work).
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Velocity models used for event location

MODEL A

Depth range (km) Vp (km/sec) Vs (km/sec)

0- 5 5.40 3.05
5-10 6.15 3.50

10-20 6.35 3.60
20-30 6.55 3.70
30-40 6.75 3.85
40-50 6.95 3.95

50+ 8.20 4.65

MODEL B

Depth range (km) Vp (km/sec) Vs (km/sec)

0- 5 5.40 3.30
5-10 6.15 3.40

10 - 20 6.35 3.50
20 - 30 6.55 3.70
30-40 6.75 4.10
40-50 6.95 4.30

50+ 8.20 4.70
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for the P velocity model in Figure 2 indicate that an upper-crustal refraction along the 6.35 kn/sec
layer at 10 an depth gives the first arrival from surface sources in the distance range of about 100
to 220 kin, and also suggests it might produce a significant secondary arrival beyond that distance.
We will denote this phase as Pg, following the notation of Aki and Richards (1980; p. 213). The
phases we use for locations include Pn, Pg, Sn, and Sg, when observable; we have not used Lg,
as we regard it as having a less precisely measurable arrival time.

For seismic arrays or sparse networks, the azimuth of arriving phases can provide crucial
constraints for determining event locations. We determine arrival azimuths using a method similar
to that described by Magotra et al. (1987) for estimating the polarization direction of arriving
seismic phases. For a polarized signal in the presence of noise, the eigenvector corresponding to
the largest eigenvalue of the covariance matrix for the signal components gives the direction of
polarization, and the ratio of eigenvalues measures the rectilinearity of particle motion
(Kanasewich, 1981). Since we are interested just in the arrival azimuth, the horizontal component
seismograms from a station are windowed (usually over 100 to 250 samples or 0.4 to 1.0 s) and
demeaned, and the 2-by-2 signal covariance matrix C is computed:

[ Var[NS] Cov[NS,EW] 1
-Cov[NS,EW] Var[EW]

where NS and EW represent the north-south and east-west component time series, respectively.
From the eigenvector for the largest eigenvalue of C, Ekmax = [l e2 ] the polarization direction
4 for the time window can be computed from tan 4 = e2 / el. For the P-wave, ) will be the
apparent back-azimuth to the event. The inherent 180* ambiguity in azimuth can be resolved by
using all three components of particle motion (Magotra et al., 1987). We find we are consistently
able to determine azimuth estimates from the first P arrival, usually with an estimated uncertainty of
50 or less. Particle motion plots are also examined for a simple check of the results.

Our methodology for evaluating the utility of secondary arrivals and arrival azimuths for the
purpose of regional seismic event location has been to approach the issue from several
complementary directions to seek self-consistent results. These directions are observational,
empirical, and theoretical. Observationally, we have examined and analyzed regional seismic data
from the Kazakhstan area to investigate the quality of secondary phase and arrival azimuth data.
Empirically, we have assessed the ability to determine accurate event locations in cases where the
true event location is known independently or can be inferred, for example from satellite images.
Theoretically, we have evaluated extensively the formal regional event location uncertainty using
secondary phase and arrival azimuth data in conjunction with the traditional first arrival data.
Overall, we feel we have developed a consistent picture of regional event location capability, but
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one which leaves room for improvement as our data and our understanding of regional wave

propagation improves.

2.4. Technical Results

The project duration was approximately 30 months, 7/22/88 to 12/31/90. Our efforts

during the period were divided among four components of study: arrival azimuth, secondary

arrivals, location algorithm, and master events. Progress achieved in these four project
components is described in the following sections.

2.4.1. Arrival Azimuth

A number of investigators have examined methods for arrival azimuth determination from
3-component seismic data (Magotra et al., 1987; Jurkevics, 1988; Christoffersson et al., 1988).
We have found the principal components analysis method to be quite successful, particularly for

broadband data analyzed in short time windows. Figure 3 shows an example of arrival azimuth

estimation using principal components analysis. The data are from the 1987 chemical explosion 1
in Kazakhstan recorded at station KKL (Given et al., 1990). The arrival azimuth and rectilinearity
are calculated from the horizontal components, using a sliding time window of 0.4 seconds. No

filtering (Jurkevics, 1988) or time-lagged weighting (Magotra et al., 1987) is applied. Note the

significant increase in rectilinearity and stability of the azimuth estimate associated with the regional

seismic phases identified in the seismogram. A reanalysis of several other selected events from the

NRDC data set provides clear justification for the use of short, early windows in the P waveform

for computing arrival azimuth. This strongly suggests that automated algorithms for estimating

arrival azimuth should use one or more polarization strength measures to select an appropriate
window for computing an azimuth estimate.

A comparison was also made between time-domain (principal components) and frequency-

domain (multiple spectral taper) polarization techniques for determining arrival azimuth from the

chemical explosion data. Our work has shown that the two methods obtain compatible results for

matching time windows. However, the time-domain method has the advantage of finer time

resolution, allowing identification of scattered and/or converted waves in the coda of the desired

direct arrival. The frequency-domain method is useful for indicating the bandwidth over which

reliable azimuth information is present (usually 1 to 15 Hz).

Two critical questions are (1) what are the accuracy and precision of arrival azimuth

estimates, and (2) how useful is arrival azimuth in constraining regional event locations. We have

9
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Figure 3. Arrival azimuth estimation using principal components analysis. The top panel shows 5
seconds of the 3-component seismograms from Chemical Explosion 1 recorded at station KKL,
while the bottom panel shows the calculated arrival azimuth and rectilinearity of the horizontal
components, using a sliding time window of 0.4 seconds.
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Table 2

Estimated and true arrival azimuths for 1987 Kazakhstan chemical explosions I and 2

Explosion BAY KKL KSU

I Estimated (I I a) 255 ± 2 293 ± 1 276 ± 2

True 257 296 277

Error 2 3 1

2 Estimated (± 1 a) 121 ± 2 56 ± 2 279 ± 4

True 125 61 272

Error 4 5 7

limited answers to the first question, and a fairly complete answer to the second. Our analysis of

data from the 1987 chemical explosions in Kazakhstan suggests that azimuth accuracy is on the

order of 50 and that precision is no better than 20, on average (see Table 2 above). However, the

latter estimate is not based on a formal error assessment, rather on an evaluation of azimuth

stability within the selected time window. Other studies have suggested that precision is only 5 to

100.

Regarding constraining regional event locations, our empirical and theoretical analyses

demonstrate the limited utility of azimuth data. For single-station locations, of course, arrival

azimuth provides the only information about source direction, and thus is critical. However, only

very poor constraint on epicenter is obtainable if the azimuth uncertainty is on the order of 50;

uncertainty increases roughly linearly with epicentral distance, at a rate of about 0.1 km per km.

Thus single-station location uncertainty will be quite high at regional distances (200 to 2000 kin,

say). This situation can be improved significantly only if the uncertainty in azimuth estimation can

be reduced substantially, for example with the use of arrays and the correction for systematic

errors.
For two-station locations, azimuth data contribute only to a slight reduction in epicenter

uncertainty, specifically along the line connecting the two observing stations, and contribute

nothing to reducing depth uncertainty. We do note, however, that without azimuth data, there is a

fundamental ambiguity in source location in this case - two points symmetrically located about the

line connecting the two observing stations will always fit the arrival time data equally well.

Azimuth information can readily remove this ambiguity. Thus they are essential for providing

11



directional information but of themselves do not improve two-station location constraint
significantly. We have also determined that arrival azimuth data contribute no significant
information in the case of three-station locations.

2.4.2. Secondary Arrivals

One of our fundamental hypotheses at the outset of this study was that secondary arrivals
could prove to be extremely useful for constraining regional event locations. We have undertaken
a three-pronged approach to the evaluation of this hypothesis: empirical (location results using
secondary arrivals), theoretical (quantification of hypothetical location capability with secondary
arrivals), and observational (observability of secondary arrivals). Our results appear to be self-

consistent and very encouraging regarding the utility of secondary arrivals.
Our most significant empirical results concern the determination of source depth with travel

time data. A thorough analysis of data from the 1987 chemical explosions in Kazakhstan has
shown that source depth can be adequately constrained even with data from a single station if
multiple arrivals are used. We relocated chemical explosions I and 2 first with depth fixed at 5 km
and then with depth free, using velocity model A. For both events, the fixed 5 km depth solutions
were notably worse than the original fixed 0 km depth solutions: the mean absolute arrival time
residuals increased from 0.08 sec to 0.87 sec for explosion 1 and from 0.24 sec to 0.68 sec for
explosion 2. Furthermore, for the solutions with focal depbh left free, the final calculated location
was in fact at 0 km depth in each case, with estimated focal depth uncertainties of 0.6 km and 1.3
km for explosions I and 2, respectively. If we further eliminate the data from station KSU, the
location quality remains essentially unaltered for explosion 1, but degrades significantly for

explosion 2. In the latter case, constraint on source depth is completely lost. With data from only
a ljn& station (either BAY or KKL), the solution for explosion 1 is still stable and reasonably
accurate, falling within 8 km in epicenter and 1 km in depth. We attribute these surprisingly
successful results for explosion 1 to the availability of multiple secondary arrivals (Pg and Sn).
These stations lie just beyond the crossover distance, where Pn is the first arrival and Pg can be
clearly observed following Pn (see Figure 3 for an example). Thus we would agree with the claim
of Ruud et al. (1988) that focal depth can be determined from data at a single station. A far more

thorough analysis will be required to establish the conditions under which depths of regional

events can be adequately constrained in general.

By making use of inverse theory, it is possible to analyze the expected location uncertainty

and stability (including depth) and evaluate the importance of each arrival time datum as functions
of actual event location, given the station locations and observed phases. Our theoretical analysis

of location capability (Li and Thurber, 1991) applied Singular Value Analysis (Lawson and
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Hanson, 1974) to suites of hypothetical arrival time and azimuth observations of P and S phases at

the three NRDC network stations (or subsets thereof). Hypothetical sources were distributed over

a region 1000 km by 1000 km, with a grid size of 20 km. Source depths were varied between 0

km and 8 km; we find that location capability is quite insensitive to source depth over this range.

We calculated the theoretical location uncertainty (assuming reasonable data variance values), and

also the data importance, to assess the solution quality for the various suites of data (stations and
phases). Arrival time uncertainty of 0.5 s and arrival azimuth uncertainty of 5' was assumed.

Our theoretical results indicate that source depth can be constrained quite well with adequate

regional travel time data, with epicenter somewhat less well constrained. First P and first S

arrivals alone at the three stations are not adequate for acceptable epicenter and depth constraint.

Location uncertainties for both parameters exceed 30 km for half of the study region. However,

adding a single secondary P observation, such as PmP, at all three stations results in d.-pth

uncertainties less than 10 km and epicenter uncertainties less than 15 km over more than 95% of

the region. Figures 4 and 5 provide a summary of theoretical location uncertainty (depth and

epicenter) for various combinations of regional phases.
We also carried out the task of evaluating secondary P phase observability from previously

studied events recorded by the former NRDC network surrounding the Soviet KTS. PmP is the
most readily observed secondary phase over a substantial distance range, perhaps 125 to 300 km.

Pg as a secondary arrival probably has only a very limited range of use just beyond the Pn

crossover distance, around 230 to 270 km. We can adequately model the arrival times of these

phases (Table 3) using only a slight modification of the model adopted in our previous work on

event location (Figure 2 above).

Table3

Misfit of observed P phase times to one-dimensional velocity model

Phase Mean (see) Standard Deviation (see)

Pg -0.02 0.4

Pn +0.05 0.5

PrP +0.24 0.3

13
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2.4.3. Location Algorithm

A companson was made between travel time calculations in a flat-layered versus spherical-

shell earth model to define the limitations for use of a flat-layered model in regional travel time
calculations. Our calculations indicate that the travel time discrepancy increases approximately
linearly with distance, increasing from 0.5 seconds at 600 km to 1.8 seconds at 2000 km. Thus it
will be essential to determine far-regional event locations using a spherical earth model.

Our previous work on regional event location (Thurber et al., 1989) utilized the location
algorithm TIAZLOC, which allows the use of"a priori" information in the assessment of event
location uncertainty. For our initial work, it was assumed that errors in determining body wave
arrival times were the sole contributor to location uncertainty (data-based uncertainty). We are now
examining the self-consistency of our a priori uncertainty estimates with the a posteriori uncertainty
estimates. The Bayesian statistics approach used in TTAZLOC apportions the contributions to the
a posteriori uncertainty estimates according to a "K-weight": a priori uncertainty is treated as
providing K data, and residuals from arrival time and azimuth data provide an additional N
observational data. Previous studies have used a K-weight of 8, which would be statistically
consistent with a normalized standard deviation of the distribution of the standard deviation
variable (the reciprocal of the standard deviation) of 0.25, and of course a normalized mean of 1.0
(Jordan and Sverdrup, 1981). For our previous work assuming the data-based uncertainty values
(case a), the standard deviation is 0.24 but the mean is 0.81, 20% too low. If we instead assume
fixed uncertainty values (in case b of 0.25 seconds for P, 0.5 seconds for S, in case c of 0.5
seconds for P, 1.0 seconds for S, and 50 for azimuth in both cases) reflecting the assumption that
inaccuracies in the crustal velocity structure, rather than the data, control location uncertainty, then
we produce distributions with standard deviations of 0.19 and 0.17 and means of 0.97 and 1.04
(cases b and c), very close to the correct mean of 1.0 but now below the self-consistent standard

deviation value of 0.25. The main implication is that the study of NRDC data by Thurber et al.
(1989) underestimated the location uncertainties of regional events by about a factor of 1.5 to 2,
given the present state of knowledge of crustal structure. However, a modest improvement in our

ability to predict regional seismic wave travel times (P to 0.25 sec, S to 0.5 sec, for example),
would reduce the location uncertainties back to quite low levels.

2.4.4. Master Events

One of the keys to improving event location capability is the availability of "master events"

that can be used for "calibration" of travel time models (or equivalently seismic velocity structure
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models). We have used a combination of events with independently known location (chemical and

nuclear explosions) and events whose source can be identified via satellite images to produce a sct

of such master events for the NRDC network. Unfortunately, both types of events are quite

limited in number, due to the small number of supervised explosions in Kazakhstan to date (four,

two at the same site) and the sparsity of high-quality satellite observations available. The chemical

explosions proved particularly valuable for a first-order evaluation of the velocity model used for

event location (Thurber et al., 1989).
On September 2 and 3, 1987, three large (10 to 20 ton) chemical explosions were detonated

in the vicinity of the network, two at the same location to the northwest of Karaganda and one on

the western boundary of the Kazakh test site (Eissler et al., 1987). Their locations are indicated in

Figure 1. Eissler et al. (1987) described the characteristics of the seismograms and presented basic

analyses of their spectra and size. All three blasts were successfully recorded by each of the

network stations. However, we have concentrated our analysis on the data for the first two

explosions, as records of the third overlapped a teleseismic arrival from a magnitude 7.2

earthquake in the Macquarie Islands. The event depths were fixed at the surface for the initial set

of calculations. In the following discussion, it should be kept in mind that the "true" explosion

locations may in fact be somewhat in error, perhaps by as much as a few kilometers, as it is not

certain how accurate the maps are that were used by the Soviets to provide the locations.

Explosion 1 was located well outside the network, at sufficient epicentral distance from all

the stations for Pn and Sn to be clear first arrivals. A strong crustal refracted phase (Pg) is also

observed at stations BAY and KKL, both about 250 km from the shot site. Despite the

unfavorable location with respect to the network, the availability of data at three stations, including

numerous secondary arrivals, removes the necessity of incorporating azimuthal information to

yield a stable location.

The location estimates for explosion 1 using the two S velocity models are listed in Table 4.

The constant Vp/Vs model (Model A) yields vastly superior results, both in terms of the accuracy

of location and the data fit. Even the origin time is well estimated. In contrast, in the case of

Model B, the 18 by 10 km error ellipse does not even encompass the true location, and the origin

time is 3 seconds early. The excellent fit for Model A is somewhat surprising. The existence of

significant lateral heterogeneity in crustal thickness and Pn velocity in the region (Antonenko,

1984), combined with the location of the shot outside the network, would lead one to expect less

favorable results. On the one hand, it is true that the DSS profile used for the P velocity model is

located between the shot point and the network, so the P structure itself may be reasonably

appropriate. On the other hand, we would have expected to obtain better results with Model B,

which has an S structure that is consistent with both DSS and teleseismic receiver structure results.
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Tabe4

Calculated and true locations for chemical explosions, using velocity models A and B

Explosion Model O.T. Latitude Longitude Error ellipe (km) True error (km) Mean residuals

1 True 0.30 50.281 72.172
A 0.65 50.263 72.161 5x3@-84* 1.8 0.08 s, 1.5*
B -2.65 50.342 71.815 18x 10@ -81* 40.1 0.79 s, 2.8'

2 True 5.00 50.000 77.333
A 5.23 50.029 77.257 2 x 1 @ +190 8.7 0.24 s, 2.60
B 5.30 50.026 77.249 7 x 3 @ +20" 9.7 0.60 s, 2.90

3 True 0.30 50.281 72.172
A 1.34 50.258 72.241 18 x 9 @ -73* 7.8 0.34 s, 9.9*
B -2.05 50.270 71.834 22x 13@ -90* 37.6 0.39 s, 11.00

For comparison, we also show the location results for explosion 3 in Table 4. Despite the
overlapping teleseism, the results are nearly identical to that for explosion 1. As before, only the
estimated origin time is off significantly, over I second late for Model A and 2 seconds early for

Model B. This 3 second difference in calculated origin time for the two velocity models also

mirrors the result for explosion 1. In terms of the input data, the only differences are the absence

of a measured Pn azimuth for station KKL, and the fact that the data from station KSU were

obtained from a high-pass-filtered version of the seismogram. Perhaps the 1 second shift in fit to
the origin time between explosions 1 and 3 is due to the masking of smaller amplitude initial

arrivals by the interfering teleseism.

Explosion 2 was located within the network, at a distance range from stations BAY and

KKL (about 150 kin) such that the first seismic phases are crustal arrivals. Unfortunately, this

removes the availability of Pn - Pg arrival differences as constraints for the location, and also

probably makes the identification of the first S arrival somewhat less reliable. The separation

between shot 2 and station KSU is comparable to that between shot 1 and stations BAY and KKL,

so mantle refracted waves are the first arrivals and a secondary crustal P phase is again observed.

Azimuthal data are included in the calculations, although they were not required to produce

acceptable location estimates.

Table 4 contains the location results for chemical explosion 2 for the two crustal models.
The two estimated locations are nearly identical: they are both shifted 9 km west of the true

location, which falls outside the error ellipse in each case. Comparison of the observed and
calculated travel times indicates that the P velocity model is too slow in the upper layers, causing
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the shift in location towards stations BAY and KKL. The only major difference in the results for

the two models is the Sn residual at KSU, which is about I second late for Model A but over 3

seconds late for Model B. This suggests that the S velocities in the deeper layers of Model B are

systematically too high. This is consistent with the Model B results for explosion 1, for which the

calculated S arrival times were significantly early.

Since most of the regional event locations are determined using da:a from only two stations
(BAY and KKL), it is informative to test the two-station location capability on the chemical

explosions. The locations were recalculated (using Model A) excluding the data from station

KSU, with little or no significant effect on the results. In the case of explosion 1, the epicenter and

origin time are essentially unchanged, although the error ellipse expands by 10%. For explosion

2, the epicenter shifts 2 km westward and the origin time is 0.25 seconds later. However, the error

ellipse does enlarge significantly, to 8.5 by 1.5 km. Thus in these two cases where the true event
locations are known, we can derive reasonable location estimates using data from only two

stations. The success of this test gives us considerable confidence in the reliability of the regional

event locations discussed below, which were mostly obtained using data from two stations.

Results for the JVE compared to locations from other sources are shown above in Table 5.

The difficulty in identifying clear direct S arrivals in the JVE seismograms limited its usefulness for

our purposes as a master event. However the regional location results are still quite good,

especially compared to the teleseismic results based on many observations.

A major product of our location effort is a catalog of well-located regional events recorded

by the NRDC network. Our published locations, with two typographical errors corrected, are

presented in Table 6. These locations have been used by other scientists in their studies of wave

propagation in the Kazakhstan region (Chan et al., 1990; Sereno, 1990).

We had two major successes in identifying sites of industrial explosions from SPOT

satellite images (Thurber et al., 1989). One was for the area around the town of Ekibastuz, north

of NRDC station Bayanaul, and the other was for an area just north of Lake Balkash, south of

station Karkaralinsk. In both cases, temporal changes in the appearance of surface mining or

quarrying sites were detectable, lending further credence to their identification as the sources of the

observed seismic events. At the time of our search through the SPOT catalog, only three other

scenes were available for areas in which events were provisionally located (events a, h, and j of
Thurber et al. (1989)). Only one tentative identificatio; of an explosions site could be made - event

j might be associated with a mine or quarry site at 510 50' N, 740 20' E, located northwest of the

town of Shiderty. It is possible that additional event sites could be identified, either now or in the

future, if and when high-resolution satellite coverage (or maps) of the region become more

available or more complete.
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Table 5

Comparison of locations for the Joint Verification Experiment explosion in the USSR

Location source Latitude Longitude Error Uncertainty

Regional data 49.926 78795 5 km 2 x 5 km
PDE 49.833 78.808 6 km <8km
CSS 49.821 78.796 7 km ?
SPOT image 49.882 78.824 < 1 km

Table 6

Catalog of 1987 two- and three-station event locations

ID OT. (d-h-m-s) Latitude Longitude Error ellipse Typc Area

a 1340936 16.4 50.190 74.157 26 x 3 @ -850 blast Karaganda
b 1350909 35.2 51.709 75.514 8 x 4 @ +740  blast Ekibastuz
c 1351035 0.3 49.304 72.712 3 x 2 @ +530 blast Karaganda
d 1410916 43.3 50.744 73.279 2 x 2 @ _800 blast Karaganda
e 1430849 22.7 49.275 75.738 5 x 2 @ -340 blast Karagayly
f 1450926 43.7 51.6"9 75.454 12 x 3 @ +840 blast Ekibastuz
g 1450956 40.9 51.743 75.316 10 x 2 @ +740 blast Ekibastuz
h 1460531 4.8 51.819 74.797 6 x 4 @ -850 blast Ekibastuz
i 1460833 26.5 51.760 75.571 15 x 6 @ -830 blast Ekibastuz
j 1621242 4.9 51.454 75.488 7 x 5 @ +160 blast Ekibastuz
k 1621250 34.3 51.677 75.525 17 x 7 @ +880 blast Ekibastuz
1 2340021 50.7 44.129 85.363 12 x 6@ -690 quake Tien Shan

m 2390852 53.0 51.213 74.302 13 x 5 @ _260 blast Ekibastuz
n 2390938 34.8 46.900 77.389 6 x 3 @ +23' blast Balkash
o 2440344 38.8 43.808 85.948 6 x 5 @ +140  quake Tien Shan
p 2440908 52.0 46.924 77.241 14 x 5 @ +150 blast Balkash
q 2450802 10.2 51.639 75.481 12 x 6 @ -690 blast Ekibastuz

20



3. Conclusions and Recommendations

Starting with very little prior information, we have demonstrated the potential for a sparse

seismic network of three 3-component stations, with an aperture of about 400 km, to locate events

over a wide region with reasonable accuracy and precision, both for epicenter and depth. Some

keys to the success of this effort have been:

(1) the initial availability of an adequate crustal model, coupled with the inferred modest level of

lateral variations in crustal structure within the array;

(2) the availability of data from known sources (the 1987 chemical explosions) to aid the

calibration of travel time models;

(3) the existence of identifiable secondary P arrivals;

(4) the availability of satellite imagery to confirm the source location of some events;

(5) the ability to pursue a multifaceted approach to the investigation of the overall location problem

(empirical, theoretical, observational).

We can make several specific recommendations for future efforts related to regional event

location:

(1) employ array studies to help identify and characterize secondary regional phases;

(2) use short time windows at the onset of the P arrival for precise azimuth estimation;

(3) obtain total coverage of the region in question by satellite imagery - including multiple sources

of data (e.g., SPOT, LANDSAT).

Overall, we regard regional seismic event location to be a difficult but quite tractable problem.
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